Как доказать что не является тождеством равенство. Тождество. Способы доказательства тождеств. Рассмотрим несколько простых примеров

ЛЕКЦИЯ №3 Доказательство тождеств

Цель: 1. Повторить определения тождества и тождественно равных выражений.

2.Ввести понятие тождественного преобразования выражений.

3. Умножение многочлена на многочлен.

4. Разложение многочлена на множители способом группировки.

Пусть каждый день и каждый час

Нам новое добудет,

Пусть добрым будет ум у нас,

А сердце умным будет!

В математике существует множество понятий. Одно из них тождество.

Тождеством называют равенство, которое выполняется при всех значениях переменных, которые в него входят. Некоторые тождества мы уже знаем.

Например, все формулы сокращенного умножения являются тождествами.

Формулы сокращенного умножения

1. (a ± b )2 = a 2 ± 2ab + b 2,

2. (a ± b )3 = a 3 ± 3a 2b + 3ab 2 ± b 3,

3. a 2 - b 2 = (a - b )(a + b ),

4. a 3 ± b 3 = (a ± b )(a 2 ab + b 2).

Доказать тождество – это значит установить, что для любого допустимого значение переменные его левая часть равна правой части.

В алгебре существует несколько различных способов доказательства тождеств.

Способы доказательства тождеств

    Выполнить равносильные преобразования левой части тождества. Если в итоге получим правую часть, тогда тождество считается доказанным. Выполнить равносильные преобразования правой части тождества. Если в итоге получим левую часть, тогда тождество считается доказанным. Выполнить равносильные преобразования левой и правой части тождества. Если в результате получим одинаковый результат, тогда тождество считается доказанным. Из правой части тождества вычитаем левую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным. Из левой части тождества вычитают правую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.

Следует так же помнить, что тождество справедливо лишь для допустимых значений переменных.


Как видите способов достаточно много. Какой способ выбрать в данном конкретном случае, зависит от тождества, которое вам необходимо доказать. По мере того, как вы будете доказывать различные тождества, придет и опыт в выборе способа доказательства.

Тождество - это уравнение, которое удовлетворяется тождественно, т. е. справедливо для любых допустимых значений входящих в него переменных. Доказать тождество - значит установить, что при всех допустимых значениях переменных его левая и правая части равны.
Способы доказывания тождества:
1. Выполняют преобразования левой части и получают в итоге правую часть.
2. Выполняют преобразования правой части и в итоге получают левую часть.
3. По отдельности преобразуют правую и левую части и получают и в первом и во втором случае одно и то же выражение.
4. Составляют разность левой и правой части и в результате её преобразований получают нуль.
Рассмотрим несколько простых примеров

Пример 1. Докажите тождество x·(a+b) + a·(b-x) = b·(a+x).

Решение.

Так как в правой части небольшое выражение, попытаемся преобразовать левую часть равенства.

x·(a+b) + a·(b-x) = x·a +x·b + a·b – a·x.

Приведем подобные слагаемые и вынесем общий множитель за скобку.

x·a + x·b + a·b – a·x = x·b + a·b = b·(a + x).

Получили что левая часть после преобразований, стала такой же как и правая часть. Следовательно, данное равенство является тождеством.

Пример 2. Докажите тождество: a ² + 7· a + 10 = (a +5)·(a +2).

Решение:

В данном примере можно поступить следующим способом. Раскроем скобки в правой части равенства.

(a+5)·(a+2) = (a²) + 5·a +2·a +10 = a²+7·a + 10.

Видим, что после преобразований, правая часть равенства стала такой же как и левая часть равенства. Следовательно, данное равенство является тождеством.

« Замену одного выражения другим, тождественно равным ему, называют тождественным преобразованием выражения»

Выяснить какое равенство является тождеством:

1. - (а – в) = - а – в;

2. 2 · (х + 4) = 2х – 4;

3. (х – 5) · (-3) = - 3х + 15.

4. рху (- р2 х2 у) = - р3 х3 у3.

«Чтобы доказать, что некоторое равенство является тождеством, или, как говорят иначе, чтобы доказать тождество, используют тождественные преобразования выражений»

Равенство верное при любых значениях переменных, называют тождеством. Чтобы доказать, что некоторое равенство является тождеством, или, как говорят иначе, чтобы доказать тождество , используют тождественные преобразования выражений.
Докажем тождество:
xy - 3y - 5x + 16 = (x - 3)(y - 5) + 1 Преобразуем левую часть этого равенства:
xy - 3y - 5x + 16 = (xy - 3y) + (- 5x + 15) +1 = y(x - 3) - 5(x -3) +1 = (y - 5)(x - 3) +1 В результате тождественного преобразования левой части многочлена мы получили его правую часть и тем самым доказали, что данное равенство является тождеством.
Для доказательства тождества преобразуют его левую часть в правую или его правую часть в левую, или показывают, что левая и правая части исходного равенства тождественно равны одному и тому же выражению.

Умножение многочлена на многочлен


Умножим многочлен a + b на многочлен c + d . Составим произведение этих многочленов:
(a+b)(c+d) .
Обозначим двучлен a + b буквой x и преобразуем полученное произведение по правилу умножения одночлена на многочлен:
(a+b)(c+d) = x(c+d) = xc + xd.
В выражение xc + xd. подставим вместо x многочлен a+b и снова воспользуемся правилом умножения одночлена на многочлен:
xc + xd = (a+b)c + (a+b)d = ac + bc + ad + bd.
Итак: (a+b)(c+d) = ac + bc + ad + bd .
Произведение многочленов a + b и c + d мы представили в виде многочлена ac + bc + ad + bd . Этот многочлен является суммой всех одночленов, получающихся при умножении каждого члена многочлена a + b на каждый член многочлена c + d .
Вывод : произведение любых двух многочленов можно представить в виде многочлена .
Правило : чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить .
Заметим, что при умножении многочлена, содержащего m членов на многочлен, содержащий n членов в произведении до приведения подобных членов должно получиться mn членов. Этим можно воспользоваться для контроля.

Разложение многочлена на множители способом группировки:

Ранее мы познакомились с разложением многочлена на множители путем вынесения общего множителя за скобки. Иногда удается разложить многочлен на множители, используя другой способ - группировку его членов .
Разложим на множители многочлен
ab - 2b + 3a - 6 Сгруппируем его так, чтобы слагаемые в каждой группе имели общий множитель и вынесем этот множитель за скобки:
ab - 2b + 3a - 6 = (ab - 2b) + (3a - 6) = b(a - 2) + 3(a - 2) Каждое слагаемое получившегося выражения имеет общий множитель (a - 2). Вынесем этот общий множитель за скобки:
b(a - 2) + 3(a - 2) = (b +3)(a - 2) В итоге мы разложили исходный многочлен на множители:
ab - 2b + 3a - 6 = (b +3)(a - 2) Способ, который мы применили для разложения многочлена на множители называют способом группировки .
Разложение многочлена ab - 2b + 3a - 6 на множители можно выполнить, группируя его члены иначе:
ab - 2b + 3a - 6 = (ab + 3a) + (- 2b - 6) = a(b + 3) -2(b + 3) = (a - 2)(b + 3)

Повторить:

1. Способы доказательства тождеств.

2. Что называют тождественным преобразованием выражения.

3. Умножение многочлена на многочлен.

4. Разложение многочлена на множители способом группировки

Учитель: Афонасова Ирина Олеговна

Предмет: алгебра

Класс: 7 класс

Тип урока: изучение нового материала

Тема: Доказательство тождеств

Цели урока:

  1. Повторить определения тождества и тождественно равных выражений, тождественного преобразования выражений.
  2. Формирование навыка выбора способа доказательства тождеств методом тождественного преобразования выражений.
  3. Воспитывать коммуникативную культуру учащихся.

Ход урока

1 . Организационный этап урока

Перед началом урока учащиеся класса разбиваются на шесть учебных групп смешанного состава.

Учитель : Здравствуйте, ребята, я предлагаю учебный кабинет превратить на время в научно-исследовательскую лабораторию , а нам с вами в ученых-магистров математических наук .

Но каждый, уважающий себя ученый, постоянно решает какую-нибудь очень важную проблему, вот и нам, прежде всего, предстоит узнать: над какой проблемой мы будем сегодня работать?

2. Определение темы урока

Для этого рассмотрим выражения 2х+у и 2ху. Найдём значения выражений при х=1 и у=2.

Учител ь предлагает выйти к доске учащемуся и решить данную задачу, а также сформулировать вывод : при х=1 и у=2 выражения принимают равные значения (4).

Учитель: Однако можно указать такие значения переменных х и у, при которых значения этих выражений не равны. Например, х=3, у=4.

Ученик , стоящий у доски, проверяет это.

Учитель: Рассмотрим теперь выражения 3(х+у) и 3х+3у. Найдём значения выражений при х=5 и у=4.

Ученик, стоящий у доски: решает задачу, формулирует вывод.

Учитель: При любых ли значениях переменных значения данных выражений равны? Если да, то почему?

Ученик отвечает. (Ответ: Да, по распределительному свойству умножения).

Учитель предлагает классу вспомнить название таких выражений, название их равенства.

После этого Слайд 1 .

Следом за тем учитель спрашивает: «Какова тема сегодняшнего урока».

Учитель : Работать сегодня мы будем над «Доказательством тождеств».

Записывается тема урока: «Доказательство тождеств» (Слайд2 )

Учитель : Хорошо, а сейчас проверим себя. На экране будут появляться равенства, если это равенство будет являться тождеством, то я предлагаю вам поднять руку. (Слайд 3 )

  1. - (а – в) = - а + в (да)
  2. а (в + с) = ав – ас (нет)
  3. а – (в + с) = а – в + с (нет)
  4. (а + в) – с = а – с + в (да)
  5. - (а + в) = - а – в (да)

3. Определение цели урока

Учитель : Хорошо, а сейчас пришла пора из теоретиков нам превращаться в ученых- практиков, но для этого нам нужно узнать, что нужно использовать, чтобы доказать тождество , и здесь нам не обойтись без научной литературы, ответ на этот вопрос мы найдем на странице 18 вашего учебника. Учащиеся находят в учебнике ответ: «Чтобы доказать, что некоторое равенство является тождеством, используют тождественные преобразования выражений» . Согласие или несогласие участники остальных групп показывают специальными сигналами, о которых говорилось выше. (Слайд 4 )

Учитель : Молодцы, но теперь возникает следующий вопрос, а что такое тождественное преобразование выражений ?

«Замену одного выражения другим, тождественно равным ему, называют тождественным преобразованием выражения» (учитель предлагает ответить на этот вопрос одного из участников любой группы) (Слайд 5 )

Учитель : Итак, какова цель урока? Учащиеся называют одну из поставленных целей: научиться доказывать тождества, используя тождественные преобразования выражений.

4. Выявление способа доказательства тождеств методом тождественного преобразования выражений

Учитель: Вот сейчас мы уже «созрели» для практической работы, и я попрошу вас обратить свое внимание на карточку . Задание: «Докажите тождество», каждая группа ученых получила пример, который она должна решить самостоятельно, если будут возникать затруднения на помощь придут карточки- консультанты.

Карточки с заданием

Карточка 1

Карточка 2

Карточка 3

Карточка 4

Карточка 5

Карточка 6

Теперь нам необходимо защитить свои работы. (Презентация выполненных работ у доски, выступают желающие участники групп)

Учитель : Замечательно, а теперь уважаемые коллеги пора подводить итоги, что же нам необходимо сделать, чтобы доказать, что равенство является тождеством? Предполагаемые ответы учащихся: (Слайд 6 )

  1. Выписать левую часть равенства, ее преобразовать и убедиться, что она равна правой.
    или
  2. Выписать правую часть равенства, ее преобразовать и убедиться, что она равна левой.
    или
  3. Преобразовать и левую и правую часть равенства и убедиться в том, что они равны одному и тому же выражению.

Учитель : Какой вывод можно сделать в том случае, когда все то, о чем мы только что сказали, не будет выполняться? Предполагаемый ответ учащихся: Равенство не будет являться тождеством.

5. Подведение итогов урока.

Удалось ли нам достичь поставленной цели? ….

Учитель : Чтобы полученные знания были прочными, эту работу мы продолжим дома: Домашнее задание (Слайд 7 ) :

№691(а), 692(а), 715(а), творческое задание (по желанию): * Составить 3 равенства, которые будут являться тождеством (проиллюстрировать каждый способ доказательства).

Учитель : А сейчас настала минутка для творчества: В стихотворении, которое вы видите, вставьте пропущенные слова (Слайд 8 ):

Равенства всякие, братцы, бывают,
И каждый об этом, конечно же, знает.
Есть – с переменными, есть – (числовые),
Сложные очень и очень (простые),
Но есть среди равенств особенный класс,
О нем поведем свой рассказ мы сейчас.
(Тождеством) равенство это зовется.
Но это еще доказать нам придется.
Для этого нужно нам только лишь взять
И равенство это (преобразовать)
Несложно, конечно, нам будет узнать
Какую придется нам часть изменять,
А, может, придется нам обе менять,
По равенства виду нетрудно (понять)
Ура! Удалось применить наши знания,
Окончено равенства преобразование.
И смело уже говорим мы ответ:
Так тождество это, или все-таки нет!

Учитель: Спасибо за урок!

Предварительный просмотр:

Карточки с заданием


Подписи к слайдам:

Определение тождества: Тождество – это равенство верное при любых допустимых значениях, входящих в его состав переменных. Определение тождественно равных выражений: Два выражения, соответственные значения которых равны при любых значениях переменных, называются тождественно равными.

Доказательство тождеств

Примеры тождеств: - (а – в) = - а + в а (в + с) = ав - ас а – (в + с) = а – в + с (а + в) – с = а – с + в - (а + в) = - а - в

Что нужно использовать, чтобы доказать тождество? Чтобы доказать, что некоторое равенство является тождеством, или, как говорят иначе, чтобы доказать тождество, используют тождественные преобразования выражений.

Тождественное преобразование выражения Замену одного выражения другим, тождественно равным ему, называют тождественным преобразованием выражения.

Чтобы доказать, что равенство является тождеством, нужно: Выписать левую часть равенства, ее преобразовать и убедиться, что она равна правой части. или Выписать правую часть равенства, ее преобразовать и убедиться, что она равна левой. или По очереди преобразовать обе части равенства и убедиться, что они равны одному и тому же выражению.

Домашнее задание: № 691(а), № 692(а), № 694, Составить 3 равенства, которые будут являться тождеством. *

Равенства всякие, братцы, бывают, И каждый об этом, конечно же, знает. Есть – с переменными, есть – … Сложные очень и очень … . Но есть среди равенств особенный класс, О нем поведем свой рассказ мы сейчас. … равенство это зовется, Но это еще доказать нам придется. Для этого нужно нам только лишь взять И равенство это … . Несложно, конечно, нам будет узнать Какую придется нам часть изменять, А, может, придётся нам обе менять, По равенства вида нетрудно … Ура! Удалось применить наши знания Окончено равенства преобразование. И смело уже говорим мы ответ: Так тождество это, иль все-таки нет?

В процессе обучения у учащихся должны быть сформированы навыки до­казательства тождеств следующими способами.

Если надо доказать, что А=В, то можно

1. доказать, что А - В = О,

2.доказать, что А/В = 1,

3. преобразовать А к виду В,

4. преобразовать В к виду А,

5. преобразовать А и В к одному виду С.

В качестве опоры, на которой строятся доказательства тождеств, исполь­зуются свойства арифметических операций. Иногда в доказательстве привлека­ются геометрические понятия и методы. Геометрические доказательства не только поучительны и наглядны, но и способствуют усилению межпредметных связей.

Доказательства тождеств можно разделить на три типа в зависимости от того, насколько они удовлетворяют требованиям строгости:

а) Не полностью строгие рассуждения, требующие использования метода математической индукции для придания им полной строгости. Эти доказательства применяются для вывода правила действий с многочленами, свойств степе­ней с натуральными показателями. Например,

а к а р = (а ·а·······а) (а ·а········а) = а ·а········а = а к+р

к раз р раз к+р раз

б) Полностью строгие рассуждения, опирающиеся на основные свойства арифметических действий и не использующие других свойств числовой системы. Основная область применения таких доказательств - тождества сокращенного ум­ножения. Многие из утверждений, выражаемых формулами сокращенного умно­жжения, допускают наглядно-геометрическую иллюстрацию.

Пример Для тождества учитель может предложить следующую иллюстрацию:

в) Полностью строгие рассуждения, использующие условия разрешимости уравнений вида Ψ(х) = а, где Ψ - изучаемая элементарная функция. Такие доказа­тельства характерны для вывода свойств степени с рациональным показателем и логарифмической функции. Например, при доказательстве свойства арифметиче­ского корня

(1)

будем опираться на переформулировку определения арифметического квадратного корня: для неотрицательных чисел х и у равенства у =
и

у 2 = х равносильны, поэтому (1) равносильно (
) 2 = (
) 2 (2). Откуда следует, а в = (
) 2 (
) 2 = а в.

Прием доказательства, который здесь использовался, применяется довольно редко, тем не менее, необходимо подчеркнуть, что основная идея доказательства состоит в сопоставлении двух операций (или функций) - прямой и обратной к ней, что найдет применение уже в старшей школе.

Технологическая цепочка формирования алгоритмов и приемов

тождественных преобразований выражений в основной школе

Алгоритм и приемы вычислений

Целые выражения

Виды целых выражений (одночлен, многочлен), их степень, стандартный вид, частные случаи, формулы сокращенного умножения. Действия с целыми выражениями: разложение многочлена на множители; выделение полного квадрата в трехчлене.

1. Алгоритмы выполнения основных действий с целыми выражениями.

2. Приемы разложения многочлена на множители.

3. Специальный прием выделения полного квадрата в трехчлене.

4. Обобщенный прием упрощения целого выражения.

5. Приемы доказательства тождества.

Рациональные выражения

Основное свойство дробного выражения и следствия из него. Сокращение дробных выражений. Действия с рациональными

выражениями.

6. Приемы записи преобразований рациональных выражений.

7. Приемы использования аналогии с действиями над рациональными числами в общих и частных случаях.

8. Обобщение приемов 4 и 5.

Иррациональные

выражения

Основное свойство корня, простейшие преобразования корней. Действия с корнями, возведение выражения в степень с дробным показателем.

9. Специальные приемы основных преобразований арифметических корней.

10.Приемы преобразования выражений со степенями с рациональным показателем.

11.Прием доказательства неравенств.

12.Обобщение приемов 2, 4, 5 и 11.

Задание к лекции

Проанализировав школьные учебники составить таблицу тождественных равенств с указанием множества, на котором оно выполняется.

Пример
, М 1 – те х, для которых имеет смыслf(x).

Доказательство тождеств. В математике существует множество понятий. Одно из них тождество.

  • Тождеством называют равенство, которое выполняется при всех значениях переменных, которые в него входят.

Некоторые тождества мы уже знаем. Например, все формулы сокращенного умножения являются тождествами.

Доказать тождество - это значит установить, что для любого допустимого значение переменные его левая часть равна правой части.

В алгебре существует несколько различных способов доказательства тождеств.

Способы доказательства тождеств

  • левой части тождества. Если в итоге получим правую часть, тогда тождество считается доказанным.
  • Выполнить равносильные преобразования правой части тождества. Если в итоге получим левую часть, тогда тождество считается доказанным.
  • Выполнить равносильные преобразования левой и правой части тождества. Если в результате получим одинаковый результат, тогда тождество считается доказанным.
  • Из правой части тождества вычитаем левую часть.
  • Из левой части тождества вычитают правую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.

Следует так же помнить, что тождество справедливо лишь для допустимых значений переменных.

Как видите способов достаточно много. Какой способ выбрать в данном конкретном случае, зависит от тождества, которое вам необходимо доказать. По мере того, как вы будете доказывать различные тождества, придет и опыт в выборе способа доказательства.

Рассмотрим несколько простых примеров

Пример 1.

Докажите тождество x*(a+b) + a*(b-x) = b*(a+x).

Решение.

Так как в правой части небольшое выражение, попытаемся преобразовать левую часть равенства.

Имеем,

  • x*(a+b) + a*(b-x) = x*a+x*b+a*b - a*x.

Приведем подобные слагаемые и вынесем общий множитель за скобку.

  • x*a+x*b+a*b - a*x = x*b+a*b = b*(a+x).

Получили что левая часть после преобразований, стала такой же как и правая часть. Следовательно, данное равенство является тождеством.

Пример 2.

Докажите тождество a^2 + 7*a + 10 = (a+5)*(a+2).

Решение.

В данном примере можно поступить следующим способом. Раскроем скобки в правой части равенства.

Получим,

  • (a+5)*(a+2) = (a^2) +5*a +2*a +10= a^2+7*a+10.

Видим, что после преобразований, правая часть равенства стала такой же как и левая часть равенства. Следовательно, данное равенство является тождеством.