Наибольшее и наименьшее значение функции нескольких переменных в области. §9 Экстремум функции двух переменных Нахождение наибольшего и наименьшего значения функции двух переменных

В июле 2020 года NASA запускает экспедицию на Марс. Космический аппарат доставит на Марс электронный носитель с именами всех зарегистрированных участников экспедиции.

Регистрация участников открыта. Получите свой билет на Марс по этой ссылке .


Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Очередной канун Нового Года... морозная погода и снежинки на оконном стекле... Все это побудило меня вновь написать о... фракталах, и о том, что знает об этом Вольфрам Альфа. По этому поводу есть интересная статья , в которой имеются примеры двумерных фрактальных структур. Здесь же мы рассмотрим более сложные примеры трехмерных фракталов.

Фрактал можно наглядно представить (описать), как геометрическую фигуру или тело (имея ввиду, что и то и другое есть множество, в данном случае, множество точек), детали которой имеют такую же форму, как и сама исходная фигура. То есть, это самоподобная структура, рассматривая детали которой при увеличении, мы будем видеть ту же самую форму, что и без увеличения. Тогда как в случае обычной геометрической фигуры (не фрактала), при увеличении мы увидим детали, которые имеют более простую форму, чем сама исходная фигура. Например, при достаточно большом увеличении часть эллипса выглядит, как отрезок прямой. С фракталами такого не происходит: при любом их увеличении мы снова увидим ту же самую сложную форму, которая с каждым увеличением будет повторяться снова и снова.

Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки о фракталах, в своей статье Фракталы и искусство во имя науки написал: "Фракталы - это геометрические формы, которые в равной степени сложны в своих деталях, как и в своей общей форме. То есть, если часть фрактала будет увеличена до размера целого, она будет выглядеть, как целое, или в точности, или, возможно, с небольшой деформацией".

Экстремум функции – это свойство местного, локального характера (см. определение). Не следует смешивать максимум (минимум) с наибольшим (наименьшим) значением функции в замкнутой области D .

Определение. Допустим, функция z = f (x, y ) определена и непрерывна в некоторой области D , имеет в этой области конечные частные производные. Тогда в этой области найдутся точки, в которых функция достигает наибольшего и наименьшего значения остальных значений. Эти точки могут лежать внутри области или на ее границе.

Для того чтобы найти наибольшее и наименьшее значения функции в замкнутой области, нужно:

1) Найти стационарные точки, расположенные внутри области, и вычислить значения функции в этих точках.

Замечание. Присоединить к стационарным точкам точки, в которых производные бесконечны или не существуют (если такие имеются).

2) Найти стационарные точки на границе области и вычислить значения функции в этих точках.

3) Найти значения функции в угловых точках – точках пересечения граничных линий.

4) Из всех найденных значений выбрать наибольшее и наименьшее.

Пример 1.22. Найти наибольшее и наименьшее значение функции

z = 2x 2 – xy + + y 2 + 7x в замкнутой области D : –3 x 3, –3 y 3 (рис. 1.3).

Рис. 1.3. Область исследования D

Решение. 1) Находим стационарные точки

Отсюда у = –1, х = –2, стационарная точка М 0 (–2, –1) D , z (М 0) = –7.

2) Исследуем функцию на границе области, которая состоит из отрезков AB, DC, CB, AD .

а) На прямой AB : у = 3, а функция имеет вид

z = 2x 2 + 3x + 9 + 7x =

= 2x 2 + 10x + 9, x [–3, 3].

Эта функция одной независимой переменной.


Определим стационарные точки данной функции:

следовательно, х = –2,5.

Определяем z при х = –2,5, а также на концах отрезка [-3, 3]:

z (–2,5; –3) = –3,5; z ( 3, –3) = –3; z (3, –3) = 57,

значит = 3,5, а = 57.

б) Рассмотрим отрезок ВС : х = 3.

z = у 2 3у + 39; у [–3, 3],

= 2у – 3; 2у – 3 = 0 у = 3/2.

Находим z (3, 3/2) = , z ( 3, 3) = 15, z (3, 3) = 39.

в) На отрезке CD : у = 3, z = 2x 2 + 4x + 9; у [–3, 3],

= –4x + 4 = 0 Þ x = –1; z (–1, 3) = 7, z ( 3, 3) = 15, z (3, 3) = 39;

Наибольшее и наименьшее значения

Функция, ограниченная в ограниченной замкнутой области, достигает в ней наибольшего и наименьшего значений или в стационарных точках, или в точках, лежащих на границе области.

Для нахождения наибольшего или наименьшего значений функции необходимо:

1. Найти стационарные точки, лежащие внутри данной области, и вычислить в них значение функции.

2. Найти наибольшее (наименьшее) значение функции на границе области.

3. Сравнить все полученные значения функции: самые большее (меньшее) и будет наибольшим (наименьшим) значением функции в данной области.

Пример 2 . Найти наибольшее (наименьшее) значение функции: в круге .

Решение .

точка стационарная; .

2 .Границей данной замкнутой области является окружность или , где .

Функция на границе области становится функцией одной переменной: , где . Найдем наибольшее и наименьшее значения этой функции.

При x=0 ; (0,-3) и (0,3)- критические точки.

Вычислим значения функции на концах отрезка

3 . Сравнивая между собой значения получаем,

В точках Aи B.

В точках C и D.

Пример 3. Найти наибольшее и наименьшее значения функции в замкнутой области, заданной неравенством:


Решение . Область представляет собой треугольник, ограниченный осями координат и прямой x+y=1.

1. Находим стационарные точки внутри области:

; ; у = - 1/ 8 ; х = 1/ 8.

Стационарная точка не принадлежит рассматриваемой области, поэтому значение z в ней не вычисляем.

2 .Исследуем функцию на границе. Так как граница состоит из трех участков, описанных тремя разными уравнениями, то исследуем функцию на каждом участке отдельно:

а ) на участке 0A: y=0- уравнение 0A, тогда ; из уравнения видно, что функция возрастает на 0A от 0 до 1. Значит .

б ) на участке 0B: x=0 - уравнение 0B, тогда ; –6y+1=0; - критическая точка.

в ) на прямой x+y = 1: y=1-x, тогда получим функцию

Вычислим значение функции z в точке B(0,1).

3 .Сравнивая числа получаем, что

На прямой AB.

В точке B.

Тесты для самоконтроля знаний.

1 . Экстремум функции - это

а) ее производные первого порядка

б) ее уравнение

в) ее график

г) ее максимум или минимум

2. Экстремум функции нескольких переменных может достигаться:

а) только в точках, лежащих внутри ее области определения, в которых все частные производные первого порядка больше нуля

б) только в точках, лежащих внутри ее области определения, в которых все частные производные первого порядка меньше нуля

в) только в точках, лежащих внутри ее области определения, в которых все частные производные первого порядка не равны нулю


г) только в точках, лежащих внутри ее области определения, в которых все частные производные первого порядка равны нулю

3. Функция, непрерывная в ограниченной замкнутой области, достигает в ней наибольшего и наименьшего значений:

а) в стационарных точках

б) или в стационарных точках, или в точках, лежащих на границе области

в) в точках, лежащих на границе области

г) во всех точках

4. Стационарными точками для функции нескольких переменных называются точки:

а) в которых все частные производные первого порядка не равны нулю

б) в которых все частные производные первого порядка больше нуля

в) в которых все частные производные первого порядка равны нулю

г) в которых все частные производные первого порядка меньше нуля

И для её решения потребуется минимальное знание темы. Заканчивается очередной учебный год, всем хочется на каникулы, и чтобы приблизить этот момент я сразу же перехожу к делу:

Начнём с области. Область, о которой идёт речь в условии, представляет собой ограниченное замкнутое множество точек плоскости . Например, множество точек, ограниченное треугольником, включая ВЕСЬ треугольник (если из границы «выколоть» хотя бы одну точку, то область перестанет быть замкнутой) . На практике также встречаются области прямоугольной, круглой и чуть более сложных форм. Следует отметить, что в теории математического анализа даются строгие определения ограниченности, замкнутости, границы и т.д. , но, думаю, все осознаЮт эти понятия на интуитивном уровне, а бОльшего сейчас и не надо.

Плоская область стандартно обозначается буквой , и, как правило, задаётся аналитически – несколькими уравнениями (не обязательно линейными) ; реже неравенствами. Типичный словесный оборот: «замкнутая область , ограниченная линиями ».

Неотъемлемой частью рассматриваемого задания является построение области на чертеже. Как это сделать? Нужно начертить все перечисленные линии (в данном случае 3 прямые ) и проанализировать, что же получилось. Искомую область обычно слегка штрихуют, а её границу выделяют жирной линией:


Эту же область можно задать и линейными неравенствами : , которые почему-то чаще записывают перечислительным списком, а не системой .
Так как граница принадлежит области, то все неравенства, разумеется, нестрогие .

А теперь суть задачи. Представьте, что из начала координат прямо на вас выходит ось . Рассмотрим функцию , которая непрерывна в каждой точке области . График данной функции представляет собой некоторую поверхность , и маленькое счастье состоит в том, что для решения сегодняшней задачи нам совсем не обязательно знать, как эта поверхность выглядит. Она может располагаться выше, ниже, пересекать плоскость – всё это не важно. А важно следующее: согласно теоремам Вейерштрасса , непрерывная в ограниченной замкнутой области функция достигает в ней наибольшего (самого «высокого») и наименьшего (самого «низкого») значений, которые и требуется найти. Такие значения достигаются либо в стационарных точках , принадлежащих области D , либо в точках, которые лежат на границе этой области. Из чего следует простой и прозрачный алгоритм решения:

Пример 1

В ограниченной замкнутой области

Решение : прежде всего, нужно изобразить область на чертеже. К сожалению, мне технически трудно сделать интерактивную модель задачи, и поэтому я сразу приведу финальную иллюстрацию, на которой изображены все «подозрительные» точки , найденные в ходе исследования. Обычно они проставляются одна за другой по мере их обнаружения:

Исходя из преамбулы, решение удобно разбить на два пункта:

I) Найдём стационарные точки. Это стандартное действие, которые мы неоднократно выполняли на уроке об экстремумах нескольких переменных :

Найденная стационарная точка принадлежит области: (отмечаем её на чертеже) , а значит, нам следует вычислить значение функции в данной точке:

– как и в статье Наибольшее и наименьшее значения функции на отрезке , важные результаты я буду выделять жирным шрифтом. В тетради их удобно обводить карандашом.

Обратите внимание на наше второе счастье – нет никакого смысла проверять достаточное условие экстремума . Почему? Даже если в точке функция достигает, например, локального минимума , то это ЕЩЁ НЕ ЗНАЧИТ, что полученное значение будет минимальным во всей области (см. начало урока о безусловных экстремумах ) .

Что делать, если стационарная точка НЕ принадлежит области? Почти ничего! Нужно отметить, что и перейти к следующему пункту.

II) Исследуем границу области.

Поскольку граница состоит из сторон треугольника, то исследование удобно разбить на 3 подпункта. Но лучше это сделать не абы как. С моей точки зрения, сначала выгоднее рассмотреть отрезки, параллельные координатным осям, и в первую очередь – лежащие на самих осях. Чтобы уловить всю последовательность и логику действий постарайтесь изучить концовку «на одном дыхании»:

1) Разберёмся с нижней стороной треугольника. Для этого подставим непосредственно в функцию:

Как вариант, можно оформить и так:

Геометрически это означает, что координатная плоскость (которая тоже задаётся уравнением ) «высекает» из поверхности «пространственную» параболу , вершина которой немедленно попадает под подозрение. Выясним, где она находится :

– полученное значение «попало» в область, и вполне может статься, что в точке (отмечаем на чертеже) функция достигает наибольшего либо наименьшего значения во всей области . Так или иначе, проводим вычисления:

Другие «кандидаты» – это, конечно же, концы отрезка. Вычислим значения функции в точках (отмечаем на чертеже) :

Тут, кстати, можно выполнить устную мини-проверку по «урезанной» версии :

2) Для исследования правой стороны треугольника подставляем в функцию и «наводим там порядок»:

Здесь сразу же выполним черновую проверку, «прозванивая» уже обработанный конец отрезка:
, отлично.

Геометрическая ситуация родственна предыдущему пункту:

– полученное значение тоже «вошло в сферу наших интересов», а значит, нужно вычислить, чему равна функция в появившейся точке :

Исследуем второй конец отрезка :

Используя функцию , выполним контрольную проверку:

3) Наверное, все догадываются, как исследовать оставшуюся сторону . Подставляем в функцию и проводим упрощения:

Концы отрезка уже исследованы, но на черновике всё равно проверяем, правильно ли мы нашли функцию :
– совпало с результатом 1-го подпункта;
– совпало с результатом 2-го подпункта.

Осталось выяснить, если ли что-то интересное внутри отрезка :

– есть! Подставляя в уравнение прямой , получим ординату этой «интересности»:

Отмечаем на чертеже точку и находим соответствующее значение функции :

Проконтролируем вычисления по «бюджетной» версии :
, порядок.

И заключительный шаг : ВНИМАТЕЛЬНО просматриваем все «жирные» числа, начинающим рекомендую даже составить единый список:

из которого выбираем наибольшее и наименьшее значения. Ответ запишем в стилистике задачи нахождения наибольшего и наименьшего значений функции на отрезке :

На всякий случай ещё раз закомментирую геометрический смысл результата:
– здесь самая высокая точка поверхности в области ;
– здесь самая низкая точка поверхности в области .

В разобранной задаче у нас выявилось 7 «подозрительных» точек, но от задачи к задаче их количество варьируется. Для треугольной области минимальный «исследовательский набор» состоит из трёх точек. Такое бывает, когда функция , например, задаёт плоскость – совершенно понятно, что стационарные точки отсутствуют, и функция может достигать наибольшего/наименьшего значений только в вершинах треугольника. Но подобных примеров раз, два и обчёлся – обычно приходится иметь дело с какой-нибудь поверхностью 2-го порядка .

Если вы немного порешаете такие задания, то от треугольников голова может пойти кругом, и поэтому я приготовил для вас необычные примеры чтобы она стала квадратной:))

Пример 2

Найти наибольшее и наименьшее значения функции в замкнутой области, ограниченной линиями

Пример 3

Найти наибольшее и наименьшее значения функции в ограниченной замкнутой области .

Особое внимание обратите на рациональный порядок и технику исследования границы области, а также на цепочку промежуточных проверок, которая практически стопроцентно позволит избежать вычислительных ошибок. Вообще говоря, решать можно как угодно, но в некоторых задачах, например, в том же Примере 2, есть все шансы значительно усложнить себе жизнь. Примерный образец чистового оформления заданий в конце урока.

Систематизируем алгоритм решения, а то с моей прилежностью паука он как-то затерялся в длинной нити комментариев 1-го примера:

– На первом шаге строим область , её желательно заштриховать, а границу выделить жирной линией. В ходе решения будут появляться точки, которые нужно проставлять на чертеже.

– Найдём стационарные точки и вычислим значения функции только в тех из них , которые принадлежат области . Полученные значения выделяем в тексте (например, обводим карандашом). Если стационарная точка НЕ принадлежит области, то отмечаем этот факт значком либо словесно. Если же стационарных точек нет вовсе, то делаем письменный вывод о том, что они отсутствуют. В любом случае данный пункт пропускать нельзя!

– Исследуем границу области. Сначала выгодно разобраться с прямыми, которые параллельны координатным осям (если таковые есть вообще) . Значения функции, вычисленные в «подозрительных» точках, также выделяем. О технике решения очень много сказано выше и ещё кое-что будет сказано ниже – читайте, перечитывайте, вникайте!

– Из выделенных чисел выбираем наибольшее и наименьшее значения и даём ответ. Иногда бывает, что такие значения функция достигает сразу в нескольких точках – в этом случае все эти точки следует отразить в ответе. Пусть, например, и оказалось, что это наименьшее значение. Тогда записываем, что

Заключительные примеры посвящены другим полезным идеям, которые пригодятся на практике:

Пример 4

Найти наибольшее и наименьшее значения функции в замкнутой области .

Я сохранил авторскую формулировку, в которой область задана в виде двойного неравенства. Это условие можно записать эквивалентной системой или же в более традиционном для данной задачи виде:

Напоминаю, что с нелинейными неравенствами мы сталкивались на , и если вам не понятен геометрический смысл записи , то, пожалуйста, не откладывайте и проясните ситуацию прямо сейчас;-)

Решение , как всегда, начинается с построения области, которая представляет собой своеобразную «подошву»:

Мда, иногда приходится грызть не только гранит науки….

I) Найдём стационарные точки:

Система-мечта идиота:)

Стационарная точка принадлежит области, а именно, лежит на её границе.

А так, оно, ничего… весело урок пошёл – вот что значит попить правильного чая =)

II) Исследуем границу области. Не мудрствуя лукаво, начнём с оси абсцисс:

1) Если , то

Найдём, где вершина параболы:
– ценИте такие моменты – «попали» прямо в точку , с которой уже всё ясно. Но о проверке всё равно не забываем:

Вычислим значения функции на концах отрезка:

2) С нижней частью «подошвы» разберёмся «за один присест» – безо всяких комплексов подставляем в функцию, причём, интересовать нас будет лишь отрезок :

Контроль:

Вот это уже вносит некоторое оживление в монотонную езду по накатанной колее. Найдём критические точки:

Решаем квадратное уравнение , помните ещё о таком? …Впрочем, помните, конечно, иначе бы не читали эти строки =) Если в двух предыдущих примерах были удобны вычисления в десятичных дробях (что, кстати, редкость), то здесь нас поджидают привычные обыкновенные дроби. Находим «иксовые» корни и по уравнению определяем соответствующие «игрековые» координаты точек-«кандидатов»:


Вычислим значения функции в найденных точках:

Проверку по функции проведите самостоятельно.

Теперь внимательно изучаем завоёванные трофеи и записываем ответ :

Вот это «кандидаты», так «кандидаты»!

Для самостоятельного решения:

Пример 5

Найти наименьшее и наибольшее значения функции в замкнутой области

Запись с фигурными скобками читается так: «множество точек , таких, что ».

Иногда в подобных примерах используют метод множителей Лагранжа , но реальная необходимость его применять вряд ли возникнет. Так, например, если дана функция с той же областью «дэ», то после подстановки в неё – с производной от никаких трудностей; причём оформляется всё «одной строкой» (со знаками ) без надобности рассматривать верхнюю и нижнюю полуокружности по отдельности. Но, конечно, бывают и более сложные случаи, где без функции Лагранжа (где , например, то же уравнение окружности) обойтись трудно – как трудно обойтись и без хорошего отдыха!

Всем хорошо сдать сессию и до скорых встреч в следующем сезоне!

Решения и ответы:

Пример 2: Решение : изобразим область на чертеже:

§ Экстремумы, Наибольшее и наименьшее значения функций нескольких переменных - страница №1/1

§ 8. Экстремумы, Наибольшее и наименьшее значения функций нескольких переменных. 1. Экстремумы функций нескольких переменных.

плоскости
,
– точка этой области.

Точка
называется точкой максимума функции
, если для любой точки

выполняется неравенство


.

Аналогично точка
называется точкой минимума функции
, если для любой точки
из некоторой окрестности точки
выполняется неравенство


.

Замечания . 1) По смыслу определений функция
должна быть определена в некоторой окрестности точки
. Т.е. точкой максимума и точкой минимума функции
могут быть только внутренние точки области
.

2) Если существует окрестность точки
, в которой для любой точки
отличной от
выполняется неравенство

(

), то точку
называют точкой строгого максимума (соответственно точкой строгого минимума ) функции
. В связи с этим, определенные выше точки максимума и минимума называют иногда точками нестрого максимума и минимума.


Точки максимума и минимума функции называются ее точками экстремума . Значения функции в точках максимума и минимума называются соответственно максимумами и минимумами , или, короче, экстремумами этой функции.

Понятия экстремумов носят локальный характер: значение функции в точке
сравнивается со значениями функции в достаточно близких точках. В данной области функция может совсем не иметь экстремумов, а может иметь несколько минимумов, несколько максимумов и даже бесчисленное множество и тех и других. При этом некоторые минимумы могут оказаться больше некоторых ее максимумов. Не следует смешивать максимумы и минимумы функции с ее наибольшим и наименьшим значениями.

Найдем необходимое условие экстремума. Пусть, например,
– точка максимума функции
. Тогда по определению существует gif" align=absmiddle width="17px" height="18px">-окрестность точки
такая, что
для любой точки
из этой окрестности. В частности,

(1)

где
,
, и

(2)

где
,
. Но (1) означает, что функция одной переменной
имеет в точке максимум или является на интервале
постоянной. Следовательно,

или
– не существует,


или
– не существует.

Аналогично из (2) получаем, что

или
– не существует.

Таким образом, справедлива следующая теорема.

ТЕОРЕМА 8.1. (необходимые условия экстремума). Если функция
в точке
имеет экстремум, то в этой точке либо обе ее частные производные первого порядка равны нулю, либо хотя бы одна из этих частных производных не существует.

Геометрически теорема 8.1 означает, что если
– точка экстремума функции
, то касательная плоскость к графику этой функции в точке либо параллельна плоскости
, либо вообще не существует. Чтобы убедиться в этом, достаточно вспомнить, как найти уравнение касательной плоскости к поверхности (см. формулу (4.6)).

Точки, удовлетворяющие условиям теоремы 8.1, называются критическими точками функции
. Также как и для функции одной переменной, необходимые условия экстремума не является достаточным. Т.е. не всякая критическая точка функции будет ее точкой экстремума.

ПРИМЕР. Рассмотрим функцию
. Точка
является для этой функции критической, так как в этой точке обе ее частные производные первого порядка
и
равны нулю. Однако она не будет точкой экстремума. Действительно,
, но в любой окрестности точки
есть точки, в которых функция принимает положительные значения и точки, в которых функция принимает отрицательные значения. В этом легко убедиться, если построить график функции – гиперболический параболоид.

Для функции двух переменных наиболее удобные достаточные условия дает следующая теорема.

ТЕОРЕМА 8.2. (достаточные условия экстремума функции двух переменных). Пусть
– критическая точка функции
и в некоторой окрестности точки
функция имеет непрерывные частные производные до второго порядка включительно. Обозначим

,
,
.

Тогда 1) если
, то точка
не является точкой экстремума;



Если с помощью теоремы 8.2 исследовать критическую точку
не удалось (т.е. если
или функция вообще не имеет в окрестности точки
непрерывных частных производных нужного порядка), ответ на вопрос о наличии в точке
экстремума даст знак приращения функции в этой точке.

Действительно, из определения следует, что если функция
имеет в точке
строгий максимум, то

для всех точек
из некоторой окрестности точки
, или, иначе

при всех достаточно малых
и
. Аналогично, если
– точка строгого минимума, то при всех достаточно малых
и
будет выполняться неравенство
.

Таким образом, чтобы выяснить, является ли критическая точка
точкой экстремума, необходимо исследовать приращение функции в этой точке. Если при всех достаточно малых
и
оно будет сохранять знак, то в точке
функция имеет строгий экстремум (минимум, если
, и максимум, если
).

Замечание . Правило остается верным и для нестрого экстремума, но с поправкой, что при некоторых значениях
и
приращение функции будет нулевым
ПРИМЕР. Найти экстремумы функций:

1)
; 2)
.


1) Функция

и
тоже существуют всюду. Решая систему уравнений
,
найдем две критические точки
и
.

Для исследования критических точек применим теорему 8.2. Имеем:

,
,
.

Исследуем точку
:

,
,
,


;
.

Следовательно, в точке
данная функция имеет минимум, а именно
.

Исследуем критическую точку
:

,
,
,


.

Следовательно, вторая критическая точка не является точкой экстремума функции.


2) Функция
определена всюду. Ее частные производные первого порядка
и тоже существуют всюду. Решая систему уравнений
,
найдем единственную критическую точку
.

Для исследования критической точки применим теорему 8.2. Имеем:

,
,
,

,
,
,

.

Установить наличие или отсутствие экстремума в точке
с помощью теоремы 8.2 не удалось.

Исследуем знак приращения функции в точке
:

Если
, то
;

если
, то
.

Поскольку
не сохраняет знак в окрестности точки
, то в этой точке функция не имеет экстремума.


Определения максимума и минимума и необходимые условия экстремума легко переносятся на функции трех и более числа переменных. Достаточные условия экстремума для функции (
) переменных ввиду их сложности в данном курсе не рассматриваются. Определять характер критических точек в этом случае мы будем по знаку приращения функции. 2. Наибольшее и наименьшее значения функции.Пусть функция двух переменных
определена в некоторой области
плоскости
,
,
– точки этой области. Значение функции в точке
называется наибольшим , если для любой точки
из области
выполняется неравенство


.

Аналогично значение функции в точке
называется наименьшим , если для любой точки
из области
выполняется неравенство

.

Ранее, мы уже говорили, что если функция непрерывна, а область
– замкнута и ограничена, то функция принимает в этой области свое наибольшее и наименьшее значения. При этом точки
и
могут лежать как внутри области
, так и на ее границе. Если точка
(или
) лежит внутри области
, то это будет точка максимума (минимума) функции
, т.е. критическая точка функции внутри области
. Поэтому для нахождения наибольшего и наименьшего значений функции
в области
нужно:
.