Основные виды геометрических моделей. Геометрическая модель Геометрические фигуры как модели реальных объектов

Это модели, которые с определённой точностью описывают геометрические свойства проектируемого объекта. Геометрические свойства – это пространственное отношение и формы (фигуры). В геометрии понятие пространство и фигуры определяется исходя из понятия множества. Пространство определяется как множество каких-либо элементов (точек), а фигура определяется как произвольное множество точек в данном пространстве.

В САПР используется математическое представление геометрической модели. Наука, которая занимается этим – инженерная (прикладная) геометрия. При геометрическом моделировании объект проектирования предстаёт как геометрический объект (ГО). Для любого геометрического объекта можно определить совокупность независимых условий, однозначно задающих этот объект, то есть позволяющие для любой точки пространства установить, принадлежит эта точка объекту или нет. Такую совокупность независимых условий называют определителем геометрического объекта. В число условий входят геометрические фигуры (точки, линии, поверхности,) и определённая последовательность действий, посредством которых из этих геометрических фигур можно построить данный геометрический объект. Эта последовательность действий называется алгоритмом воспроизведения данного геометрического объекта.

Количественно геометрический объект характеризуется параметрами . При выделении параметров важно учитывать области их существования, например, для треугольника числа, выражающие длины сторон, всегда больше нуля и сумма двух чисел больше третьего числа.

Для описания геометрической фигуры необходимо выделить параметры двух типов – формы и положения . Параметры формы характеризуют размеры и форму геометрической фигуры, они не изменяются при изменении положения фигуры в пространстве; параметры положения характеризуют положение геометрической фигуры в пространстве. Параметризация формы производится в системе координат, которая связана с самой фигурой и перемещается вместе с ней. Параметризация положения фигуры производится в системе координат независимо от фигуры.

При описании геометрического объекта различают подмножества граничных точек – поверхность геометрического объекта ; и подмножество внутренних точек – тело геометрического объекта .

Геометрические объекты бывают сложной формы и сложной структуры. Геометрические объекты сложной формы – это те, у которых поверхность сложного характера (например, корпус судна, автомобиля). Геометрические объекты сложной структуры – состоящие из нескольких ГО.

В автоматизированном проектировании известны два основных подхода к геометрическому модулированию:

Первый подход состоит в том, что выделяется некоторый набор геометрических фигур, которые в данном классе задач считаются элементарными (базовыми). Наряду с геометрическим набором вводится набор действий – геометрических операций над этим набором. Геометрический объект в этом случае называется составным (конструктивным).

Второй подход непосредственное описание и воспроизведение геометрических свойств объекта без использования вспомогательных, заранее заготовленных фиксированных фигур. В этом случае непосредственно описывается закон образования геометрического объекта как множество точек, обладающих соответствующими свойствами.

Подход, основанный на «прямом» моделировании геометрического объекта, в зависимости от способа формирования можно разделить на кусочно-аналитические и алгебро-логические модели объекта .

В кусочно-аналитических моделях поверхность объекта представляется отдельными кусками гладких поверхностей, называемыми гранями. Каждая грань задаётся своим уравнением поверхности и границами грани. Рёбра геометрического объекта или границы грани есть линии пересечения поверхностей, ограничивающие геометрический объект. Точки пересечения рёбер называются вершинами .

Существует три вида моделей: стержневая, оболочная и объемная.

Стержневая модель геометрического объекта позволяет весьма просто дать форму изображения проектируемого объекта путём построения проволочно-каркасной модели геометрического объекта. В такой модели описываются только рёбра и вершины геометрического объекта, грани не описываются (рис.1а).Ребра представлены в виде стержней, соединенных в узлах (вершинах 1,2,3....). Основными уравнениями для описания такой модели являются уравнения прямой линии в трехмерном пространстве. Такая модель является подмоделью, но она позволяет оперативно осуществлять вывод изображения геометрического объекта, а также выполнять такие операции, как построение аксонометрических и перспективных проекций.


Математическое описание моделей такого рода сравнительно простое, что обуславливает высокое быстродействие программного обеспечение. К недостаткам таких моделей следует отнести сложность или невозможность представления внутреннего облика объекта, построения произвольных его разрезов и сечений.

Геометрические модели объекта

а – стержневая; б - оболочечная

Оболочечная модель объекта (рис.1б) , основана на представлении внешнего облика объекта в виде совокупности поверхностей, являющихся гранями модели (А, Б, В...). Линии пересечения поверхностей образуют ребра модели.

Такая модель описывается системой уравнений поверхностей и может быть использована для моделирования внешнего облика объектов любой формы. Основной ее недостаток невозможность представления внутреннего облика объекта, построение его разрезов и сечений.


Наиболее современной моделью, нашедшее широкое применение в САПР, является объемная (твердотелая модель). Общепринятым порядком моделирования твердого тела является последовательность выполнения булевых операций (объединение, вычитание и пересечение) над объемными элементами (сферы, призмы, цилиндры, конусы, пирамиды и т.д.). Эти элементы описываются теми же уравнениями, что и поверхности оболочечной модели, однако объемные элементы считаются заполненными. Пример выполнения операций с объемными элементами показан на рис.2.

Рис.2. Операции с объемными элементами

Геометрическое моделирование

Пример.

Изменение масштаба.

Поворот осей;

Перенос в начало координат;

Пусть на плоскости задан отрезок прямой АВ: А(3,2) и В(-1,-1). Что произойдет с отрезком при полной смене координат наблюдателя, если: 1) начало координат переносится в точку (1,0);

2) произойдет поворот осей на угол

3) изменение масштаба по оси Х вдвое.

Решение:

1) в новой с.к. отрезок будет иметь следующие координаты: А(3-1, 2-0) и В(-1-1, -1-0), т.е А(2,2) и В(-2, -1);

2) при повороте осей в новой с.к:

3) изменение масштаба, S x =2


При решении большинства задач в области автоматизированного конструирования и технологии промышленного производства необходимо учитывать форму проектируемого объекта, поэтому в их основе лежит геометрическое моделирование.

Модель - это математическое и информационное представление объекта, сохраняемое в памяти ЭВМ.

Под геометрическими моделями понимают модели, содержащие информацию о геометрии изделия, технологическую, функциональную и вспомогательную информации.

Под геометрическим моделированием понимают весь процесс обработки от вербального (словесного на некотором языке) описания объекта в соответствии с поставленной задачей до получения внутримашинного представления.

В геометрическом моделировании объект можно представить в виде:

Ø Каркасная (проволочная) модель (рис. 1)

Ø Поверхностная (полигональная или фасетная) модель (рис. 2)

Ø Твердотельная (объемная) модель (рис. 3)

I) Каркасная: конструктивными элементами являются ребра и точки . Эта модель проста, но с ее помощью можно представить в пространстве только ограниченный класс деталей. Каркасные модели удобны для представления двумерных геометрических объектов на плоскости, на основе каркасной модели можно получать их проекции. Но в ряде случаев они дают неоднозначное представление и имеют ряд недостатков :

§ Неоднозначность, нельзя отличить видимые линии от невидимых, можно по-разному интерпретировать изображение;

§ Невозможность распознавания криволинейных граней, и, в следствии этого сложности тонирования;

§ Сложность обнаружения взаимного влияния компонентов.

Каркасные модели не используются для анимации. Возникают трудности при вычислении физических характеристик: объем, масса, и т.д. Используются такие модели преимущественно для самых общих построений.

II) Поверхностные модели : при построении такой модели предполагается, что технологические объекты ограничены плоскостями, которые ограничивают их от окружающей среды. Конструктивными элементами являются точки, ребра и поверхности . Здесь используются также различные криволинейные поверхности, что позволяет задавать тоновые изображения.



Поверхность технологического объекта, как и в каркасном моделировании, получается ограниченной контурами, но в полигонном моделировании эти контуры являются результатом двух касающихся или пересекающихся поверхностей. Здесь часто используются аналитические кривые, т.е исходные кривые описываемые некоторой сложной математической зависимостью.

Поверхностные модели дают возможность удобства скульптурного изображения, т.е любую поверхность можно внести как элементарную и в дальнейшем использовать ее для формирования сложных изображений. Использование таких поверхностных моделей позволяет легко изобразить сопряжение поверхностей.

Недостатком полигонного моделирования является то, что чем больше задающих поверхностей необходимо для описания объекта, тем сильнее полученная модель будет отличаться от его реальной формы, и тем выше количество обрабатываемой информации, а значит и определенные сложности в воспроизведении первоначального объекта.

III) Твердотельные модели . Конструктивными элементами твердотельных моделей являются: точка , контурный элемент и поверхность .

Для объемных моделей объектов существенно разграничение точек на внутренние и внешние, по отношение к объектам. Для получения таких моделей сначала определяются поверхности, ограничивающие объект, и затем они собираются в объект.

Полное определение объемной формы, возможность автоматического построения разрезов, сборок, удобное определение физических характеристик: массы, объема, и т.д., удобная анимация. Это используется для моделирования, обработки различными инструментами любых поверхностей.

Разнообразная палитра цветов дает возможность получения фотоизображения.

В качестве базовых примитивов используются различного вида отдельные элементы: цилиндр, конус, параллелелепипед, усеченный конус.

В основе построения сложных объемов из примитивов лежат булевы операции:

Пересечение;

Объединение;

/ - разность.

Их использование базируется на теоретико-множественном представлении об объекте как множестве точек принадлежащих тому или иному телу. Операция объединения предполагает объединение всех точек принадлежащих обоим телам (объединение нескольких тел в одно); пересечение – всех точек, лежащих на пересечении (результат- тело, которое содержит частично оба исходных тела); разность – вычитание одного тела из другого.

Все эти операции могут применяться последовательно над базовыми элементами и промежуточными результатами, получая нужный объект.

Таким образом строятся все детали в машиностроении: добавляются бобышки, вырезаются отверстия, пазы, проточки, и т.д.

Обособленным случаем объемной модели являются конструктивные модели, в которых геометрические объекты представляются в виде структур. Известны следующие способы построения таких структур:

1. Объем определяется как совокупность ограничивающих его поверхностей.

2. Объем определяется комбинацией элементарных объемов, каждый из которых обращается в соответствии с пунктом 1.

3D Моделирование позволяет самое удобное получение физических характеристик, удобно для выполнения имитации механической обработки.

В настоящее время существует большое число пакетов 3D моделирования. Остановимся на UNIGRAPHICS. (HP)

9.2. Система UNIGRAPHICS. (CAD/CAM – система).

Unigraphics - это интерактивная система автоматизации проектирования и изготовления. Для обозначения систем этого класса используется аббревиатура CAD/CAM, что переводится как Проектирование с Помощью Компьютера и Изготовление с Помощью Компьютера. Подсистема CAD предназначена для автоматизации проектных, конструкторских и чертежных работ на современных промышленных предприятиях. Подсистема CAM обеспечивает автоматизированную подготовку управляющих программ для оборудования с ЧПУ на основе математической модели детали, созданной в подсистеме CAD.

Система Unigraphics имеет модульную структуру. Каждый модуль выполняет определенные функции. Все функциональные модули Unigraphics вызываются из управляющего модуля, который называется Unigraphics Gateway («ворота»). Это базовый модуль, который «встречает» пользователя при запуске Unigraphics, когда ни один прикладной модуль еще не запущен. Как бы олицетворяет собой фойе (Geteway) в здании Unigraphics.

Unigraphics - это трехмерная система, которая позволяет идеально воспроизвести почти любую геометрическую форму. Комбинируя эти формы, можно спроектировать изделие, выполнить инженерный анализ и выпустить чертежи.

После завершения проектирования имеется возможность разработки технологического процесса для изготовления детали.

Система Unigraphics имеет более 20 модулей.

1.Создание 3-х мерной модели в модуле Modeling/Моделирование .

Рассмотрены возможности создания моделей по эскизам, описан процесс образования тела, рассмотрено построение тела при помощи листовых поверхностей. Рассмотрено создание собственного типового элемента.

2.Разработка сборочной единицы с применением модуля Assemblies/Сборки.

Данный модуль позволяет скомпоновать сборочную единицу. Несколько моделей могут быть собраны по условиям сопряжения поверхностей, либо растиражированы в единый сборочный узел.

3.Испытания детали с применением модуля Analyze/Структурный анализ .

При проектировании часто возникает необходимость испытания детали. Это необходимо для того, чтобы еще на ранних этапах проектирования выявить недостатки конструкции и найти так называемые «слабые места». Для испытания детали в UG существует модуль Структурный Анализ.

4.Создание конструкторской документации с помощью модуля Drafting/Черчение.

В этом модуле рассмотрены общие принципы создания конструкторской документации в CAD/CAM/CAE системе Unigraphics. Приведены особенности настроек различных параметров, методы установки размеров, работа со слоями, шаблонами и таблицами, а также параметры вывода документов на печать.

5.Разработка технологического процесса для изготовления детали с применением модуля Manufacturing/Обработка.

Модуль обработки позволяет в интерактивном режиме программировать и обрабатывать постпроцессором траектории инструмента для операций фрезерования, сверления, токарной и электроэрозионной обработки.

1.Один из главных модулей пакета является Modeling с помощью которого выполняется построение твердотельной геометрической модели. Моделирование ведется на основе типовых элементов и операций. При необходимости пользователь может использовать любое созданное тело как базовое.

Эскиз – набор функций который позволяет задать плоский контур кривых, управляемых размерами.

Используется своя терминология :

Feature – типовой элемент формы.

Body – тело, класс объектов, которое состоит из двух видов: объемное тело, либо листовое тело.

Solid body – тело, состоящее из граней и ребер, которые вместе полностью замыкают объем - объемное тело;

Sheet body – тело, состоящее из граней и ребер, которые не замыкают объем – листовое тело.

Face – часть внешней поверхности тела, которая имеет одно уравнение для своего описания.

Edge – кривые, которые ограничивают грань.

Part – часть проекта.

Язык выражений .

Используется язык выражений, синтаксис которого напоминает язык С. Можно задать переменные, набор операций, можно определить выражение, которое описывает некоторую часть, и, импортировать в другие части. Используя механизм передачи выражений между частями можно моделировать зависимость между компонентами сборки. Например, некоторая заклепка может зависеть от диаметра отверстия. При изменении диаметра отверстия автоматически изменится и диаметр этой заклепки, если они связаны.

Типовые элементы формы .

Ø Заметаемые тела – на основе эскиза перемещением в прямом направлении.

Ø Тела вращения – получается от эскиза или плоского тела вращением вокруг оси (параллелепипед, цилиндр, конус, сфера, труба, бобышка)

Булевы операции .

§ Unite – объединить;

§ Subtract – вычесть;

§ Intersect – пересечение.

9.2.1.Модуль Modeling/Моделирование.

Одним из главных модулей UG является Modeling, с помощью которого выполняется построение твердотельной геометрической модели. Моделирование ведется на основе типовых элементов и операций. При необходимости можно использовать любое созданное тело как базовое.

Преимущества твердотельного моделирования:

ü Богатый набор типовых методов построения твердого тела;

ü Возможность управления моделью с помощью изменения параметров;

ü Легкость редактирования;

ü Высокая производительность;

ü Возможность концептуального проектирования;

ü Лучшая визуализация модели,

ü Модель создается за меньшее количество шагов;

ü Возможность создания “мастер-модели”, способной поставлять информацию в такие приложения как черчение и программирование для станков с ЧПУ;

ü Автоматическое обновление чертежа, программы для станка и т.д. при изменении геометрической модели;

ü Простой, но точный способ оценки массово-инерционных характеристик модели.

Среди методов твердотельного моделирования UNIGRAPHICS предлагает:

Эскиз – набор функций, который позволяет задать плоский контур кривых, управляемых размерами.

Можно использовать эскиз для быстрого задания и определения размеров для любой плоской геометрии. Эскиз может быть вытянут, повернут либо протащен вдоль произвольной заданной направляющей. Все эти операции приводят к построению твердого тела. В дальнейшем можно изменить размеры эскиза, поменять на нем размерные цепочки, изменить наложенные на него геометрические ограничения. Все эти изменения приведут к модификации как самого эскиза, так и твердотельного тела, которое на нем построено.

Моделирование на базе типовых элементов и операций

Используя метод типовых элементов и операций, можно легко создать сложное твердое тело, имеющее отверстия, карманы, пазы и другие типовые элементы. После создания геометрии есть возможность прямого редактирования любого из использованных элементов. Например , изменить диаметр и глубину ранее заданного отверстия.

Собственные типовые элементы

Если не достаточен стандартный набор типовых элементов, то можно легко его расширить, объявив любое созданное тело как типовое и, задав параметры, которые должны вводиться пользователем при его использовании.

Ассоциативность

Ассоциативность – взаимосвязь элементов геометрической модели. Эти зависимости устанавливаются автоматически, по мере создания геометрической модели. Например , сквозное отверстие автоматически ассоциируется с двумя гранями твердого тела. После этого любые изменения этих граней автоматически вызовут изменение отверстия, так что его свойство `протыкать` модель насквозь сохранится.

Позиционирование типовых элементов

Возможно использование функции размерного позиционирования элементов для того, чтобы правильно определить их положение на твердом теле. Позиционные размеры так же обладают свойством ассоциативности и помогут сохранить целостность описания модели при ее дальнейшем редактировании. Кроме того, можно изменять положение элементов простым редактированием размеров.

Ссылочные типовые элементы

Создаются такие ссылочные элементы, как координатные оси и плоскости. Эти элементы удобно использовать для ориентации и позиционирования других типовых элементов. Координатные плоскости, например , удобно использовать для задания положения эскиза. Координатная ось может использоваться как ось вращения, либо как прямая до которой задается размер. Все ссылочные элементы сохраняют свойство ассоциативности.

Выражения

Возможность добавления в модель необходимых соотношений, используя возможность задания параметров в виде математических формул любой сложности, содержащих даже условный оператор “если”.

Булевы операции

При построении твердого тела система допускает логические операции объединения, вычитания и пересечения. Эти операции могут использоваться как для сплошного, так и листового твердого тела.

Соотношение Ребенок/Родитель

Элемент построения, зависящий от другого элемента, называется ребенком. Элемент, на базе которого создается новый элемент - родитель.

9.2.2. Модуль Assemblies/Сборки.

Этот модуль предназначен для конструирования сборочных единиц (узлов), моделирования отдельных деталей в контексте сборки.

Устанавливаются ассоциативные связи сборки с ее компонентами для упрощения процесса проведения изменений на различных уровнях описания изделия. Особенность использования сборки заключается в том, что конструкторские изменения одной детали отражаются на всех сборках, использующих эту деталь. В процессе построения сборки не нужно заботится о геометрии. Система создает ассоциативные связи сборки с ее компонентами, которые обеспечивают автоматическое отслеживание изменений геометрии. Существуют различные способы построения сборки, которые позволяют детали или подсборки друг с другом.

Моделирование – один из основных методов познания, который заключается в выделении из сложного явления (объекта) некоторых частей и замещении их другими объектами, более понятными и удобными для описания, объяснения и разработки.

Модель – реальный физический объект или процесс, теоретическое построение, упорядоченный набор данных, которые отражают некоторые элементы или свойства изучаемого объекта или явления, существенные с точки зрения моделирования.

Математическая модель – модель объекта, процесса или явления, представляющая собой математические закономерности, с помощью которых описаны основные характеристики моделируемого объекта, процесса или явления.

Геометрическое моделирование – раздел математического моделирования – позволяет решать разнообразные задачи в двумерном, трехмерном и, в общем случае, в многомерном пространстве.

Геометрическая модель включает в себя системы уравнений и алгоритмы их реализации. Математической основой построения модели являются уравнения, описывающие форму и движение объектов. Все многообразие геометрических объектов является комбинацией различных примитивов – простейших фигур, которые в свою очередь состоят из графических элементов - точек, линий и поверхностей.

В настоящее время геометрическое моделирование успешно используется в управлении и других областях человеческой деятельности. Можно выделить две основные области применения геометрического моделирования: проектирование и научные исследования.


Геометрическое моделирование может использоваться при анализе числовых данных. В таких случаях исходным числовым данным ставится в соответствие некоторая геометрическая интерпретация, которая затем анализируется, а результаты анализа истолковываются в понятиях исходных данных.

Этапы геометрического моделирования :

● постановка геометрической задачи, соответствующая исходной прикладной задаче или ее части;

● разработка геометрического алгоритма решения поставленной задачи;

● реализация алгоритма при помощи инструментальных средств;

● анализ и интерпретация полученных результатов.

Методы геометрического моделирования :

● аналитический;

● графический;

● графический, с использованием средств машинной графики;

● графоаналитические методы.

Графоаналитические методы основываются на разделах вычислительной геометрии, таких как теория R-функций, теория поверхностей Кунса, теория кривых Безье, теория сплайнов и др.

Для современных научных исследований характерно использование, наряду с двумерными и трехмерными, многомерных геометрических моделей (физика элементарных частиц, ядерная физика и т. д.).

Системы координат

Система координат (СК) – совокупность базисных (линейно независимых) векторов и единиц измерения расстояния вдоль этих векторов (e 1, e 2, …, en ).

Если базисные вектора нормированы (единичной длины) и взаимно ортогональны, то такая СК называется декартовой (ДСК).

Мировая система координат (МСК) xyz – содержит точку отсчета (начало координат) и линейно независимый базис, благодаря которым становится возможным цифровое описание геометрических свойств любого графического объекта в абсолютных единицах.

Экранная система координат (ЭСК) x эy эz э. В ней задается положение проекций геометрических объектов на экране дисплея. Проекция точки в ЭСК имеет координату z э = 0. Тем не менее, не следует отбрасывать эту координату, поскольку МСК и ЭСК часто выбираются совпадающими, а, вектор проекции [x э, y э, 0] может участвовать в преобразованиях, где нужны не две, а три координаты.

Система координат сцены (СКС) x сy сz с – описывает положение всех объектов сцены - некоторой части мирового пространства с собственным началом отсчета и базисом, которые используются для описания положения объектов независимо от МСК.

Объектная система координат (ОСК) x оy оz о – связана с конкретным объектом и совершает с ним все движения в СКС или МСК.


В трехмерном пространстве (R3):

ортогональная декартова СК (x , y , z );

цилиндрическая СК (ρ, y , φ);

сферическая СК (r , φ, ω).

Соотношение между декартовой СК и цилиндрической СК :



Соотношение между декартовой СК и сферической СК :

Соотношение между цилиндрической СК и сферической СК :

Аффинные преобразования

Аффинным называется преобразование, обладающее следующими свойствами :

● любое аффинное преобразование может быть представлено как последовательность операций из числа простейших: сдвиг, растяжение/сжатие, поворот;

● сохраняются прямые линии, параллельность прямых, отношение длин отрезков, лежащих на одной прямой, и отношение площадей фигур.

Аффинные преобразования координат на плоскости :

(x , y ) – двумерная система координат,

(X , Y ) – координаты старой СК в новой системе координат.



Обратное преобразование:

2. Растяжение/сжатие осей:

Обратное преобразование


Обратное преобразование – поворот системы (X ,Y ) на угол (-α):

Аффинные преобразования объектов на плоскости .

x , y – старые координаты точки, X , Y – новые координаты точки.



Сдвиг:

Обратное преобразование:

Масштабирование объекта:

Обратное преобразование:


3. Поворот вокруг центра координат:



Обратное преобразование:


Лекция 8

Геометрические модели плоских объектов

Основные понятия

Положение точки в пространстве Rn (n -мерном пространстве) задается радиус-вектором p = [p 1, p 2,, pn ], имеющим n координат p 1, p 2,, pn и разложение по n линейно-независимым базисным векторам e 1, e 2,, en :

https://pandia.ru/text/78/331/images/image019_47.gif" width="277" height="59">

Линия на плоскости может быть задана с помощью уравнения в неявной форме:

(НФ) f (x ,y )= 0;

или в параметрической форме:

(ПФ) p (t )= [x (t ), y (t )].

В любой регулярной (гладкой и некратной) точке на линии p 0= [x 0, y 0]= p (t 0) возможна линеаризация кривой, т. е. проведение к ней касательной прямой, уравнения которой имеют вид

(НФ) Nx (x - x 0) + Ny (y - y 0) = 0 или N (p - p 0) = 0,

(ПФ) x (t ) = x 0 + Vx t , y (t )= y 0 + Vy t или p (t ) = p 0 + Vt .

Вектор нормали N = [Nx , Ny ] ортогонален линии и направлен в ту сторону, где f (p )> 0.

Направляющий вектор линии V = [Vx , Vy ] начинается в точке p 0 и направлен по касательной к p (t ) в сторону увеличения t .

Векторы N и V ортогональны, т. е. N V = 0 или NxVx + NyVy = 0.

Связь вектора нормали и направляющего вектора:

N =[Vy , - Vx ], V =[-Ny , Nx ]

Способы описания (модели) прямой линии

Неявное уравнение прямой задается тремя коэффициентами A , B и D , составляющими вектор F = [A , B , D ]:

(НФ): Ax + By + D =0.

Хотя бы одно из чисел A или B должно быть ненулевым.

Если оба коэффициента ненулевые (A ≠0 и B ≠0), то прямая проходит наклонно к осям координат и пересекается с ними в точках (-D / A , 0) и (0, - D / B ).

При A =0, B ≠0 уравнение By + D =0 описывает горизонтальную прямую y = – D / B .

При A ≠0, B = 0 уравнение Ax + D =0 описывает вертикальную прямую x = – D / A .

Прямая проходит через начало координат: f (0,0)=0 при D =0.

Благодаря свойству прямой разделять плоскость на две полуплоскости с противоположными знаками, неявное уравнение позволяет определять положение точки (точек) на плоскости относительно прямой:

1) точка q лежит на прямой, если f (q )=0;

2) точки a и b лежат по одну сторону от прямой, если f (a )f (b )>0;

3) точки a и b лежат по разные стороны от прямой, если f (a )f (b )<0.

Для построения прямой по неявному уравнению необходимо и достаточно иметь либо две несовпадающие точки p 0 и p 1, через которые она проходит, либо точку p 0 и направляющий вектор V , с помощью которого вторая точка p 1 вычисляется как p 1= p 0+ V .

Из неявного уравнения прямой N = [A , B ] Þ V = [- B , A ].

Нормальное уравнение прямой – прямая описывается с помощью точки p 0 и вектора нормали N и выводится из условия ортогональности векторов N и (p - p 0) для всех точек p , принадлежащих прямой f (p )= N ◦(p - p 0).

Неявная функция позволяет оценить положение точки p относительно вектора нормали прямой:

● при f (a )>0 точка a лежит в том же полупространстве, куда направлена нормаль, а угол Ð (a - p 0, N ) острый;

● при f (b )<0 угол Ð (b - p 0, N ) тупой, а точка b и нормаль находятся по разные стороны от прямой.

Параметрическая функция прямой p (t )= p 0+ Vt , где
V = [- Ny , Nx ] удобна для задания и построения частей прямой – отрезков и лучей. Для этого необходимо указать пределы изменения параметра t :

● бесконечный интервал -¥<t <¥ не ограничивает протяженность бесконечной прямой;

● при t ³0 получается луч, выходящий из точки p 0 в бесконечность в направлении вектора V ;

● конечный интервал t 0≤t t 1 определяет отрезок прямой между точками p 0+ Vt 0 и p 0+ Vt 1.

Благодаря левой ориентации направляющего вектора V относительно вектора нормали N эквивалентная нормальной форме функция

https://pandia.ru/text/78/331/images/image030_34.gif" width="309" height="47 src=">

Изменение параметра пучка в интервале 0≤λ≤1 дает такие промежуточные прямые, что вращение происходит по кратчайшим углам.

Уравнение биссектрисы угла между двумя прямыми получается при λ=0,5, если | N 1|=| N 2| или | V 1|=| V 2|. В результате параметры биссектрисы можно найти по формулам

F бис=| N 2| F 1+| N 1| F 2, p бис(t )= q + V бисt , V бис=| V 2| V 1+| V 1| V 2.

Расчет биссектрис бывает необходим, например, при построении окружности, вписанной в треугольник. Как известно, ее центр лежит в точке пересечения биссектрис внутренних углов этого треугольника. При построении биссектрисы внутреннего угла следует учитывать направления подставляемых в формулу векторов сторон треугольника: они должны либо оба выходить из вершины, либо оба входить в нее. При несоблюдении этого правила по указанной формуле будет проведена биссектриса дополнительного угла треугольника, а окружность окажется вневписанной.

Геометрические модели классифицируют на предметные, расчетные и познавательные. Среди геометрических моделей можно выделить плоские и объемные модели. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и размерах объекта, о его расположении относительно других. Чертежи машин, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначений, особых правил и определенного масштаба. Чертежи могут быть монтажными, общего вида, сборочными, табличными, габаритными, наружных видов, пооперационными и т.д. Чертежи также различают по отраслям производства: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, проекции с числовыми отметками, аффинные проекции, стереографические проекции, кинеперспектива и т.п. К предметным моделям относятся чертежи, карты, фотографии, макеты, телевизионные изображения и т.п. Предметные модели тесно связаны с визуальным наблюдением. Среди предметных геометрических моделей можно выделить плоские и объемные модели. Предметные модели существенно различаются по способу исполнения: чертежи, рисунки, картины, фотографии, киноленты, рентгенограммы, макеты, модели, скульптуры и т.п. В зависимости от стадии проектирования чертежи различают на чертежи технического предложения, эскизного и технического проектов, рабочие чертежи. Чертежи также различают на подлинники, оригиналы и копии.



Графические построения могут служить для получения численных решений различных задач. Графически можно выполнять алгебраические действия (складывать, вычитать, умножать, делить), дифференцировать, интегрировать и решать уравнения. При вычислении алгебраических выражений числа изображаются направленными отрезками. Для нахождения разности или суммы чисел соответствующие им отрезки откладываются на прямой линии. Умножение и деление осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла прямыми параллельными линиями. Комбинация действий умножения и сложения позволяет вычислять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений является значение абсциссы точки пересечения кривых. Графически можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать и интегрировать, а также решать уравнения. Геометрические модели для графических вычислений необходимо отличать от номограмм и расчетных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограммы и РГМ представляют собой геометрические изображения функциональных зависимостей и не требуют для нахождения численных значений новых построений. Номограммы и РГМ используются для вычислений и исследований функциональных зависимостей. Вычисления на РГМ и номограммах заменяется считыванием ответов с помощью элементарных операций, указанных в ключе номограммы. Основными элементами номограмм являются шкалы и бинарные поля. Номограммы подразделяются на элементарные и составные номограммы. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограммы состоит в том, что для построения РГМ используются геометрические методы, а для построения номограмм аналитические методы. Номография – переход от аналитической машины к геометрической машине.

К познавательным моделям относятся графики функций, диаграммы и графы. Графическая модель зависимости одних переменных величин от других называется графиком функций. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования. Графическое изображение, наглядно показывающее соотношение каких-либо величин, является диаграммой. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо величин по количественному признаку, называется гистограммой. Геометрические модели, изображающие отношения между элементами множества называются графами. Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планирования и управления, теории расписаний, социологии, биологии, в решении вероятностных и комбинаторных задач и т.п.

Особое значение имеют теоретические геометрические модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразования и неизменные свойства фигур, независящие от них. В начертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассматриваются в планиметрии, а свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются зависимости между углами и сторонами сферических треугольников. Теория фотограмметрии и стерео- и фотограмметрии позволяет определять формы, размеры и положения объектов по их фотографическим изображениям в военном деле, космических исследованиях, геодезии и картографии. Современная топология изучает непрерывные свойства фигур и их взаимного расположения. Фрактальная геометрия (введена в науку в 1975 Б. Мандельбротом), изучающая общие закономерности процессов и структур в природе, благодаря современным компьютерным технологиям стала одним из самых плодотворных и прекрасных открытий в математике. Фракталы пользовались бы еще большей популярностью, если бы опирались на достижения современной теории начертательной геометрии.

Задачи классической начертательной геометрии можно условно разделить на позиционные, метрические и конструктивные задачи.

В технических дисциплинах используются статические геометрические модели, которые помогают сформировать представления об определенных предметах, их кон­структивных особенностях, о входящих в их состав элементах, и динамические или функциональные геометрические модели, которые позволяют демонстрировать кинематику, функциональные связи или же технические и технологические процессы. Очень часто геометрические модели позволяют проследить ход таких явлений, которые обычному наблюдению не поддаются и могут быть представлены на основании имеющихся знаний. Изображения позволяют не только представить устройство оп­ределенных машин, приборов и оборудования, но одновременно охарактеризовать их технологические особенности и функциональ­ные параметры.

Чертежи дает не только геометрическую информацию о форме деталей узла. По нему понимается принцип работы узла, перемещение деталей относительно друг друга, преобразование движений, возникновение усилий, напряжений, преобразование энергии в механическую работу и т.п. В техническом вузе чертежи и схемы имеют место во всех изучаемых общетехнических и специальных дисциплинах (теоретическая механика, сопротивление материалов, конструкционные материалы, электромеханика, гидравлика, технология машиностроения, станки и инструменты, теория машин и механизмов, детали машин, машины и оборудование и др.). Для передачи различной информации чертежи дополняют различными знаками и символами, а для их словесного описания используются новые понятия, в основу формирования которых положены фундаментальные понятия физики, химии и математики.

Особенно интересным является использование геометрических моделей для проведения аналогий между геометрическими законами и реальными объектами для анализа сущности явления и оценки теоретического и практического значения математических рассуждений и анализа сущности математического формализма. Отметим, общепринятые средства передачи приобретаемого опыта, знаний и восприятия (речь, письменность, живопись и т. д.) являются заведомо гомоморфной проекционной моделью реальной действительности. Понятия о проекционном схематизме и операции проектирования относятся к начертательной геометрии и имеют своё обобщение в теории геометрического моделирования.Проекционные геометрические модели, получаемые в результате операции проецирования, могут быть совершенными, несовершенными (различной степени несовершенства) и распавшимися. С геометрической точки зрения, любой объект может иметь множество проекций, различающихся как положением центра проектирования и картины, так и их размерностью, т.е. реальные явления природы и общественных отношений допускают различные описания, отличающиеся друг от друга степенью достоверности и совершенства. Основой научного исследования и источником всякой научной теории является наблюдение и эксперимент, который всегда имеет целью выявления некоторой закономерности. Все эти обстоятельства послужили основанием для использования аналогий между различными видами проекционных геометрических моделей, полученных при гомоморфном моделировании, и моделями, возникающими в результате исследования.


Если два снимка установлены в такое же положение в котором они находились во время фотографирования, сократив расстояние между точками S1 и S2 до размера базиса проектирования b1 , то получим геометрическую модель местности А’С’D’ подобную участку местности АСD.

Геометрическая модель местности определяется как совокупность точек пересечения соответствующих проектируемых лучей.

Основные понятия:

Базис фотографирования В - расстояние между центрами проекции S1 и S2.

Связка проектируемых лучей - это совокупность проектируемых лучей принадлежащих центру проекции S.

Лучи - это лучи проходящие через центр проекции S и идентичной точки пары снимков.

Базисная плотность - это плотность содержащий базис фотографирования и один (любой) проектируемый луч.

Главная базисная плотность - плотность, содержащая базис фотографирования и один главный луч.

Базис проектирования b - это расстояние между центрами проекций S1 и S2 двух связок, по которой построена модель.

Внутреннее ориентирование снимка - это связки, восстановленные с помощью проектируемых камер.

Взаимное ориентирование снимков - это проектирование камеры с восстановленными связками, которые перемещаются друг относительно друга и устанавливают их так, чтобы лучи пересекались, тогда снимки займут такое же положение, как и во время съемки.

Взаимное ориентирование снимков м.б. достигнуто двумя способами:

Угловыми движениями обеих камер

Движение 1-й камеры (при неподвижной 2-й)

В связи с этим различают 2 системы взаимного ориентирования снимков:

в 1-й неподв. счит. базис фотограф., во 2-й левый снимок. 1-я сист. 2-я сист.В этой сист. базис фотограф. счит. горизонт. независим. от его положен. в пространств. £1 - продольн угол наклона левого снимка те угол в гл. базисной плоск. м/д перпенд. к базису фотограф и гл лучом левой связки. £2 - продольн. угол наклона прав. снимка ǽ1 - угол повор. лев. снимка ǽ2 - угол повор. прав. снимка w2 - взаимн. поперечн. угол наклона

Поперечн. параллакс - это разность ординат соот. т-к прав и лев снимк. q=y1-y2 Трансф. снимк. когда базис фотограф. и снимк. горизонт., оси х лев и прав снимк. лежат на одной прямой и ордин. точек будут равны q0=y01-y02=0

Если измерен. ордин. не равны на снимк., то они взаимн. не ориент.

Продольн. параллакс - это разность абсцисс точек и зависит от формата снимка продольн. перекр и рельефа. р=х1-х2

а1а1=х1; а2а2=-х2; S2A’//‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌S1A; а2а1’=а1а1=х‌1; а2а1’=х‌1-х2=р; АА’=В

1. ∆S2а2а1’~∆S2AA’; ; (1); (2)т.е. для гор. снимка парал. равен базису фотограф. в масш. съемки

2. ∆S1о1а1~S1O1A; ; ; ; ; Н=-Z; с учетом ф(1) Z=-B×f/p. В совр. приб. использ способ мнимой марки, в нем для измерения коорд. т-к исп. 2-е марки Т1 и Т2. Если одновр. расматр. две марки, то они сольют. в 1-у Т, если совмещ. Т1 и Т2 с соотв. т-ми а1 и а2 на сним., то марка восприним. совмещ. с пов-тью модели. Если марка Т2 не совмещ. с одноимен. т-ой а2, то видимая простр. марка Т’’ будет восприним. выше или ниже поверхн. модели.

28. Дешифрирование снимков для составления топографических и кадастровых планов и карт.

Дешифрирование – процесс распознавания по фотоизображению предметов и контуров местности, границ землевладений и землепользований, установление их качественной и количественной характеристик и вычерчивание их условными знаками.

В зависимости от содержания, дешифрирование делят на:

Топографическое;

Специальное.

При топографическом дешифрировании со снимков получают информацию о земной поверхности и расположении на ней объектах.

Основой методической классификации дешифрирования являются средства считывания и анализа видеоинформации. Исходя из этого, выделяют следующие основные методы:

1)Визуальный – информация считывается и анализируется человеком;

2)Машино-визуальный – информация предварительно преобразовывается машинами с целью облегчения последующего визуального анализа;

3)Автоматизированный – считывает со снимков и анализ выполнения машинами при активном участии оператора;

4)Автоматический – дешифрирование полностью выполняется машинами, человек определяет задачи и задает программу обработки.

Методика генерализации информации при дешифрировании базируется в основном на методике картографической генерализации, т.к. основной объем дешифрированных работ выполняется в целях создания топографических и специальных карт.

Нормы генерализации:

1) 4мм 2 для пахотных земель, залежей, улучшенных луговых земель, вкрапленных в них других земель;

2) 10мм 2 для немелиорируемых луговых земель;

3) 50мм 2 для одноименных различных по качественным признакам с/х земель;

4) 100мм 2 для контуров кустарника, бурелома, горелого или сухостойного леса;

5) озера, пруды дешифрируют независимо от их размеров;

6) линейные контура – если их длина превышает 1см, промоины если их длина превышает 0,5см.

Технологическая последовательность работ:

1)Составление технического проекта и сметы. На этом этапе определяются, какие карты масштабом 1:10000 подлежат обновлению. Границы аэрофотоснимка устанавливаются так, чтобы она покрывала полные планшеты. Аэрофотосъемку выполняют в масштабе 1:15000;

2)Подготовительные работы. Включает сбор, систематизацию, анализ и подготовку материалов съемки, юридических, картографических, справочных и др. материалов;

3)Камеральное дешифрирование. На снимки с имеющихся карт переносят все подтверждаемые фотоизображением объекты. Так же дешифрируют четко читаемые по фотоизображению объекты, появившиеся после создания карты. При камеральном дешифрировании не показывают: границы землепользований и землевладений, границы территориальных и административно-территориальных единиц, границы охранных зон, границы разделения земель по видам. Эти объекты будут установлены и отображены при выполнении полевого дешифрирования;

4)Полевое дешифрирование. Уточняются характеристики объектов;

5)Оформление и приемка материалов;

6)Составление технического отчёта.

Дешифрирование населенных пунктов начинается с выделения и вычерчивания магистральных улиц (1мм), прочих улиц, переулков, проездов, тупиков(0,5мм). Постройки разделяются по огнестойкости и размерам. Кварталы с преобладанием огнестойких построек закрашиваются розовым цветом, не огнестойкие – голубым цветом. Постройки размеры стен, которых в натуре не превышают 10м, в зависимости от формы показывают внемасштабным условным знаком, прямоугольником 0,7 × 1мм или квадратом 1 × 1мм.